The purpose of the current study was to characterize parasite-containing cells located in spleens of BALB/c mice infected with Leishmania donovani. In particular, expression of MHC class II molecules by these cells was examined to determine whether they could potentially act as cells capable of immunostimulating Leishmania-reactive CD4+ T lymphocytes. To this end, an immunohistological analysis of spleens taken at various time points after infection was undertaken. Using this approach, we observed, in the red pulp, the formation of small cellular infliltrates containing heavily infected macrophages that could be stained with the monoclonal antibodies MOMA-2 and FA/11. All of them expressed high levels of MHC class II molecules. Parasites were also detected in the white pulp, especially in MOMA-2+, FA/11+ and MHC class II+ macrophages of the periarteriolar lymphocyte sheath and in MOMA-2+ marginal zone macrophages. Infected cells were further characterized by fluorescence microscopy after their enrichment by adherence. All infected mononuclear cells recovered by this procedure could be stained with MOMA-2 and FA/11 and thus very probably belonged to the mononuclear phagocyte lineage. Furthermore, all of them strongly expressed both MHC class II as well as H-2M molecules, regardless of the time points after infection. Analysis of the parasitophorous vacuoles (PV) by confocal microscopy showed that these compartments were surrounded by a membrane enriched in lysosomal glycoproteins lamp-1 and lamp-2, in macrosialin (a membrane protein of prelysosomes recognized by FA/11) and in MOMA-2 antigen. About 80% of the PV also had MHC class II and H-2M molecules on their membrane. Altogether, these data indicate that in the spleens of L. donovani-infected mice, a high percentage of amastigotes are located in macrophages expressing MHC class II molecules and that they live in PV exhibiting properties similar to those of PV detected in mouse bone marrow-derived macrophages exposed to a low dose of interferon gamma (IFN-gamma) and infected in vitro.