In whole muscle homogenates, the glucose transporter-4 (GLUT-4) content is reported to be higher in muscles consisting predominantly of oxidative (type-1) muscle fibres than in muscles consisting predominantly of glycolytic (type-2) fibres. From these findings, it has been deduced that in rat muscle, oxidative fibres have an intrinsically higher level of GLUT-4 protein than glycolytic fibres. No data is available concerning human muscle. Moreover, the fibre-type-specific expression of GLUT-4 has not yet been examined directly. In this study, the relative abundance of GLUT-4 protein expression in individual fibres of different types within a muscle was compared directly in immunohistochemical assays. The human vastus lateralis muscle and a selection of rat muscles were studied using a novel GLUT-4 antiserum. It is concluded that the pattern of fibre-type-specific GLUT-4 expression differs between human and rats and varies between the different muscles studied, indicating that non-fibre-type-specific factor(s) affect expression of GLUT-4. The observation that within a muscle a fibre-type-specific expression of GLUT-4 was observed indicates that fibre-type-specific factors contribute to GLUT-4 expression as well. Thus, it can be postulated that both fibre-type-dependent and fibre-type-independent factors affect GLUT-4 expression.