The increased interest in laser technology (e.g. for micro-machining, for medical applications, light shows, CD-players) is a tremendous driving force for the development of new laser types and optical set-ups. This directly influences their use in analytical chemistry. For direct analysis of the elemental composition of solids, mostly solid state lasers, such as Nd:YAG laser systems operating at 1064 nm (fundamental wavelength), 266 nm (frequency quadrupled) and even 213 nm (frequency quintupled) have been investigated in combination with all available inductively coupled plasma mass spectrometers. The trend towards shorter wavelengths (1064 nm - 157 nm) was initiated by access to high quality optical materials which led to the incorporation of UV gas lasers, such as excimer lasers (XeCl 308 nm, KrF 248 nm, ArF 193 nm, and F2 157 nm) into laser ablation set-ups. The flexibility in laser wavelengths, output energy, repetition rate, and spatial resolution allows qualitative and quantitative local and bulk elemental analysis as well as the determination of isotope ratios. However, the ablation process and the ablation behavior of various solid samples are different and no laser wavelength was found suitable for all types of solid samples. This article highlights some of the successfully applied systems in LA-ICP-MS. The current fields of applications are explained on selected examples using 266 nm and 193 nm laser ablation systems.