We tested whether exposure to anabolic-androgenic steroids (AASs) would induce apoptosis in adult rat ventricular myocytes in vitro. Myocytes were exposed to stanozolol (STZ), testosterone enanthate (TE) and testosterone (T) (0.1 micromol/L, 1 micromol/L, 10 micromol/L, and 100 micromol/L) for 20 h. The percentage of myocytes undergoing apoptosis was determined by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) and was found to be increased when compared to control myocytes at STZ 10 micromol/L 12 +/- 2% (mean +/- SD), STZ 100 micromol/L 42 +/- 3%; TE 1 micromol/L 11 +/- 2%, TE 10 micromol/L 21 +/- 3%, TE 100 micromol/L 62 +/- 2%; T 10 micromol/L 11 +/- 2%, T 100 micromol/L 40 +/- 3% (P < 0.001 vs. CTL 2 +/- 2%). The STZ-, TE- and T-induced dose-dependent apoptotic cell death was corroborated by a significantly increased DNA laddering in myocytes exposed to STZ and T > or = 10 micromol/L and TE > or = 1 micromol/L. Notably, STZ, TE, and T exposure markedly increased the expression of the pro-apoptotic oncogene Bax-alpha, as assessed by reverse transcription-polymerase chain reaction. Taken together, these results clearly show for the first time that AASs induce apoptotic cell death in a dose-dependent manner. This finding may have important implications in understanding the pathogenesis of ventricular remodeling, cardiomyopathy, and sudden cardiac death associated with AAS abuse.
Copyright 2001 Wiley-Liss, Inc.