The enzyme factor VIIa (FVIIa) triggers the blood coagulation cascade upon association with tissue factor (TF). The TF-induced allosteric enhancement of FVIIa's activity contributes to the procoagulant activity of the complex, and Met-306 in the serine protease domain of FVIIa participates in this event. We have characterized FVIIa variants mutated in position 306 with respect to their ability to be stimulated by TF. The amidolytic activity of FVIIa mutants with Ser, Thr, and Asn in position 306 was stimulated 9-, 12-, and 7-fold, respectively, by soluble TF as compared to 22-fold for wild-type FVIIa. In contrast, the activity of Met306Asp-FVIIa only increased about 2-fold and that of Met306Asp/Asp309Ser-FVIIa increased about 1.5-fold. Modeling suggests that Asp in position 306 prevents the TF-induced stimulation of FVIIa by disrupting essential intermolecular hydrogen bonds. The ability of the FVIIa variants to catalyze factor X activation and the amidolytic activity were enhanced to a similar extent by soluble TF. This indicates that factor X does not promote its own activation through interactions with exosites on FVIIa made accessible upon FVIIa-TF assembly. Met306Asp-FVIIa binds soluble TF with a dissociation constant of 13 nM (about 3-fold higher than that of FVIIa), and, in sharp contrast to FVIIa, its binding kinetics are unaltered after inactivation with D-Phe-Phe-Arg chloromethyl ketone. We conclude that a single specific amino acid replacement, substitution of Asp for Met-306, virtually prevents the TF-induced allosteric changes which normally result in dramatically increased FVIIa activity and eliminates the effect of the active site inhibitor on TF affinity.