Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder

J Pharmacol Exp Ther. 2001 Apr;297(1):43-9.

Abstract

Extracellular nucleotides regulate transepithelial ion secretion via multiple receptors. The P2Y(2) receptor is the predominant transducer of chloride transport responses to nucleotides in the airways, but the P2 receptors that control ion transport in gastrointestinal epithelia have not been identified. UTP and UDP promote chloride secretion in mouse jejuna and gallbladder epithelia, respectively, and these responses were unaffected by P2Y(2) receptor gene disruption. Pharmacological data suggested the involvement of P2Y(4) and P2Y(6) receptors in gastrointestinal responses. To identify the P2Y receptors responsible for the gastrointestinal actions of UTP and UDP, we have cloned the murine P2Y(4) and P2Y(6) receptors and have stably expressed each in a null cell line to examine the nucleotide-promoted inositol phosphate formation and intracellular Ca(2+) mobilization. The (m)P2Y(4) receptor was potently, but not selectively, activated by UTP (UTP > or = ATP >ITP > GTP > CTP), and it was not activated by UDP or ADP. The (m)P2Y(6) receptor was highly selective for UDP (UDP >> ADP = GDP). The nucleotide selectivities observed with the recombinant (m)P2Y(4) and (m)P2Y(6) receptors resemble those for nucleotide-promoted chloride transport in murine P2Y(2)(-/-) jejuna and gallbladder epithelial cells, respectively. Ion transport responses to nucleotide additions were examined in freshly excised tissues from cystic fibrosis transmembrane regulator-deficient mice. Although the effect of UTP on jejunal short-circuit current (I(sc)) was impaired in the CF mouse, UDP-promoted I(sc) changes were not affected in CF gallbladder epithelium, suggesting that the P2Y(6) receptor is a target for treatment of CF gallbladder disease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / pharmacology
  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Chloride Channels / physiology
  • Chlorides / metabolism*
  • Cloning, Molecular
  • Cystic Fibrosis / drug therapy*
  • Cystic Fibrosis / metabolism
  • Female
  • Gallbladder / metabolism*
  • Male
  • Mice
  • Mice, Inbred DBA
  • Molecular Sequence Data
  • RNA, Messenger / analysis
  • Receptors, Purinergic P2 / chemistry
  • Receptors, Purinergic P2 / genetics
  • Receptors, Purinergic P2 / physiology*

Substances

  • Chloride Channels
  • Chlorides
  • RNA, Messenger
  • Receptors, Purinergic P2
  • purinoceptor P2Y4
  • purinoceptor P2Y6
  • Adenosine Triphosphate