The dynamics of photoinduced charge separation and charge recombination processes in synthetic DNA hairpins have been investigated by means of femtosecond transient absorption spectroscopy. The driving force and distance dependence of charge-transfer processes involving singlet acceptors and nucleobase donors are consistent with a single-step superexchange mechanism in which the electronic coupling between the donor and acceptor is strongly distance dependent. The dynamics of reversible hole transport between a primary guanine donor and nearby GG or GGG sequences has also been determined and establishes that these sequences are very shallow hole traps.