Transforming growth factor-betas (TGF-betas) are potent inhibitors of cell proliferation, and disruption of components of the TGF-beta signaling pathway leads to tumorigenesis. Mutations of transmembrane receptors and Smads mediating intracellular signaling have been reported in various cancers. To identify transcriptional targets of TGF-beta, we conducted an expression profile analysis. HaCaT cells derived from human keratinocytes and highly sensitive to TGF-beta were treated with TGF-beta in the absence or presence of cycloheximide (CHX). mRNAs extracted from the HaCaT cells were used for hybridization of oligonucleotide arrays representing approximately 5600 human genes. TGF-beta increased the expression of PAI-1, junB, p21 cdk inhibitor, Smad7, betaIG-H3, and involucrin that have been reported to be up-regulated by TGF-beta, validating the usefulness of this approach. The induction of betaIG-H3 by TGF-beta was completely abolished by CHX, suggesting that the transcription of betaIG-H3 is not directly regulated by TGF-beta. Unexpectedly, we identified more genes down-regulated by TGF-beta than up-regulated ones. TGF-beta repressed the expression of epithelial specific Ets that may be involved in breast and lung tumorigenesis, which could contribute to tumor suppression by TGF-beta. Among a panel of cell cycle regulators, TGF-beta induced the expression of p21 cdk inhibitor; however, the induction of other cdk inhibitors was not significant in the present study. Taken together, the results suggest that TGF-beta may suppress tumorigenesis through positive and negative regulation of transcription.