Thymic neuroendocrine self-antigens. Role in T-cell development and central T-cell self-tolerance

Ann N Y Acad Sci. 2000:917:710-23. doi: 10.1111/j.1749-6632.2000.tb05435.x.

Abstract

The repertoire of thymic neuroendocrine precursors plays a dual role in T-cell differentiation as the source of either cryptocrine accessory signals in T-cell development or neuroendocrine self-antigens presented by the thymic major histocompatibility complex (MHC) machinery. Thymic neuroendocrine self-antigens usually correspond to peptide sequences highly conserved during the evolution of one family. The thymic presentation of some neuroendocrine self-antigens is not restricted by MHC alleles. Oxytocin (OT) is the dominant peptide of the neurohypophysial family. It is expressed by thymic epithelial and nurse cells (TEC/TNCs) of different species. Ontogenetic studies have shown that the thymic expression of the OT gene precedes the hypothalamic one. Both OT and VP stimulate the phosphorylation of p125FAK and other focal adhesion-related proteins in murine immature T cells. These early cell activation events could play a role in the promotion of close interactions between thymic stromal cells and developing T cells. It is established that such interactions are fundamental for the progression of thymic T-cell differentiation. Insulin-like growth factor 2 (IGF-2) is the dominant thymic polypeptide of the insulin family. Using fetal thymic organ cultures (FTOCs), the inhibition of thymic IGF-2-mediated signaling was shown to block the early stages of T-cell differentiation. The treatment of FTOCs with an mAb anti-(pro)insulin had no effect on T-cell development. In an animal model of autoimmune type 1 diabetes (BB rat), thymic levels of (pro)insulin and IGF-1 mRNAs were normal both in diabetes-resistant and diabetes-prone BB rats. IGF-2 transcripts were clearly identified in all thymuses from diabetes-resistant adult (5-week) and young (2- and 5-days) BB rats. In marked contrast, the IGF-2 transcripts were absent and the IGF-2 protein was almost undetectable in +/- 80% of the thymuses from diabetes-prone adult and young BB rats. These data show that a defect of the thymic IGF-2-mediated tolerogenic function might play an important role in the pathophysiology of autoimmune Type 1 diabetes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adult
  • Animals
  • Antigen Presentation / physiology
  • Autoantigens / immunology
  • Humans
  • Immune Tolerance*
  • Neuroimmunomodulation*
  • Neurosecretory Systems / immunology*
  • T-Lymphocytes / immunology*

Substances

  • Autoantigens