Hyperinsulinism of infancy: the regulated release of insulin by KATP channel-independent pathways

Diabetes. 2001 Feb;50(2):329-39. doi: 10.2337/diabetes.50.2.329.

Abstract

Hyperinsulinism of infancy (HI) is a congenital defect in the regulated release of insulin from pancreatic beta-cells. Here we describe stimulus-secretion coupling mechanisms in beta-cells and intact islets of Langerhans isolated from three patients with a novel SUR1 gene defect. 2154+3 A to G SUR1 (GenBank accession number L78207) is the first report of familial HI among nonconsanguineous Caucasians identified in the U.K. Using patch-clamp methodologies, we have shown that this mutation is associated with both a decrease in the number of operational ATP-sensitive K+ channels (KATP channels) in beta-cells and impaired ADP-dependent regulation. There were no apparent defects in the regulation of Ca2+- and voltage-gated K+ channels or delayed rectifier K+ channels. Intact HI beta-cells were spontaneously electrically active and generating Ca2+ action currents that were largely insensitive to diazoxide and somatostatin. As a consequence, when intact HI islets were challenged with glucose and tolbutamide, there was no rise in intracellular free calcium ion concentration ([Ca2+]i) over basal values. Capacitance measurements used to monitor exocytosis in control and HI beta-cells revealed that there were no defects in Ca2+-dependent exocytotic events. Finally, insulin release studies documented that whereas tolbutamide failed to cause insulin secretion as a consequence of impaired [Ca2+]i signaling, glucose readily promoted insulin release. Glucose was also found to augment the actions of protein kinase C- and protein kinase A-dependent agonists in the absence of extracellular Ca2+. These findings document the relationship between SUR1 gene defects and insulin secretion in vivo and in vitro and describe for the first time KATP channel-independent pathways of regulated insulin secretion in diseased human beta-cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • ATP-Binding Cassette Transporters*
  • Adenosine Diphosphate / physiology
  • Adenosine Triphosphate / physiology*
  • Calcium / physiology
  • Calcium Signaling
  • Cytosol / physiology
  • Exocytosis / physiology
  • Genotype
  • Humans
  • Hyperinsulinism / congenital*
  • Hyperinsulinism / genetics
  • Hyperinsulinism / metabolism*
  • Hyperinsulinism / physiopathology
  • In Vitro Techniques
  • Infant, Newborn
  • Insulin / metabolism*
  • Insulin Secretion
  • Islets of Langerhans / metabolism*
  • Islets of Langerhans / physiopathology
  • Molecular Sequence Data
  • Mutation / physiology
  • Patch-Clamp Techniques
  • Potassium Channels / genetics
  • Potassium Channels / metabolism
  • Potassium Channels / physiology*
  • Potassium Channels, Inwardly Rectifying*
  • Receptors, Drug / genetics
  • Receptors, Drug / metabolism
  • Sulfonylurea Receptors

Substances

  • ABCC8 protein, human
  • ATP-Binding Cassette Transporters
  • Insulin
  • Potassium Channels
  • Potassium Channels, Inwardly Rectifying
  • Receptors, Drug
  • Sulfonylurea Receptors
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Calcium

Associated data

  • GENBANK/L78207