Recombinant bactericidal/permeability-increasing protein attenuates the systemic inflammatory response syndrome in lower limb ischemia-reperfusion injury

J Vasc Surg. 2001 Apr;33(4):840-6. doi: 10.1067/mva.2001.111992.

Abstract

Objectives: Hind limb ischemia-reperfusion (I/R) injury increases gut permeability, and resultant endotoxemia is associated with an amplified systemic inflammatory response syndrome leading to multiple organ dysfunction syndrome. We studied the potential role of recombinant bactericidal/permeability-increasing protein (rBPI(21) ), a novel antiendotoxin therapy, in modulating endotoxin-enhanced systemic inflammatory response syndrome in hind limb I/R injury.

Methods: In this prospective, randomized, controlled, experimental animal study, 48 male Wistar rats, weighing 300 to 350 g, were randomized to a control group (sham) and five groups undergoing 3 hours bilateral hind limb ischemia with 2 hours reperfusion (I/R) (n = 8 per group). The control and untreated I/R groups received thaumatin, a control-protein preparation, at 2 mg/kg. Treatment groups were administered rBPI(21) intravenously at 1, 2, or 4 mg/kg body weight at the beginning of reperfusion; an additional group was administered rBPI(21) intravenously at 2 mg/kg after 1 hour of reperfusion. Plasma interleukin-6 concentration was estimated by bioassay as a measure of systemic inflammation. Plasma endotoxin concentration was determined by use of an amebocyte lysate chromogenic assay. Crossreactive immunoglobulin G and M antibodies to the highly conserved inner core region of endotoxin were measured by use of an enzyme-linked immunosorbent assay. The lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were used as markers of edema and neutrophil sequestration, respectively.

Results: I/R provoked highly significant elevation in plasma interleukin-6 concentrations (1351.20 pg/mL [860.16 - 1886.40 pg/mL]) compared with controls (125.32 pg/mL [87.76-157.52 pg/mL; P <.0001]), but treatment with rBPI(21) 2 mg/kg at onset of reperfusion (715.89 pg/mL [573.36-847.76 pg/mL]) significantly decreased interleukin-6 response compared with the nontreatment group ( P <.016). I/R increased plasma endotoxin concentrations significantly (21.52 pg/mL [6.20-48.23 pg/mL]), compared with control animals (0.90 pg/mL [0.00-2.30 pg/mL; P <.0001]), and treatment with rBPI(21) 4 mg/kg at reperfusion significantly decreased endotoxemia (1.30 pg/mL [1.20-2.20 pg/mL]), compared with the untreated group ( P <.001). The lung tissue myeloperoxidase level was significantly increased in the untreated I/R group (208.18% [128.79%-221.81%]), compared with in controls (62.00% [40.45%-80.92%; P <.0001]), and attenuated in those treated with rBPI(21) 2 mg/kg (129.54% [90.49%-145.78%; P <.05]). Data represent median and interquartile range, comparisons made with the nonparametric Mann-Whitney U test.

Conclusions: These findings show that hind limb ischemia-reperfusion injury is associated with endotoxemia, elevations in plasma interleukin-6, and pulmonary leukosequestration. Treatment with rBPI(21) after ischemia reduces endotoxemia, the interleukin-6 response, and attenuates pulmonary leukosequestration in response to hind limb reperfusion injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antimicrobial Cationic Peptides
  • Blood Proteins / therapeutic use*
  • Endotoxins / blood
  • Hindlimb / blood supply*
  • Interleukin-6 / blood
  • Lung / chemistry
  • Lung / pathology
  • Male
  • Membrane Proteins*
  • Peroxidase / analysis
  • Rats
  • Rats, Wistar
  • Recombinant Proteins / therapeutic use
  • Reperfusion Injury / blood
  • Reperfusion Injury / etiology
  • Reperfusion Injury / pathology
  • Reperfusion Injury / prevention & control*
  • Systemic Inflammatory Response Syndrome / complications*

Substances

  • Antimicrobial Cationic Peptides
  • Blood Proteins
  • Endotoxins
  • Interleukin-6
  • Membrane Proteins
  • Recombinant Proteins
  • bactericidal permeability increasing protein
  • Peroxidase