Plastidial acetyl-coenzyme A carboxylase from most plants is a multi-enzyme complex comprised of four different subunits. One of these subunits, the biotin carboxyl carrier protein (BCCP), was previously proposed to be encoded by a single gene in Arabidopsis. We report and characterize here a second Arabidopsis BCCP (AtBCCP2) cDNA with 42% amino acid identity to AtBCCP1 and 75% identity to a class of oilseed rape (Brassica napus) BCCPs. Both Arabidopsis BCCP isoforms were expressed in Escherichia coli and found to be biotinylated and supported carboxylation activity when reconstituted with purified, recombinant Arabidopsis biotin carboxylase. In vitro translated AtBCCP2 was competent for import into pea (Pisum sativum) chloroplasts and processed to a 25-kD polypeptide. Extracts of Arabidopsis seeds contained biotinylated polypeptides of 35 and 25 kD, in agreement with the masses of recombinant AtBCCP1 and 2, respectively. AtBCCP1 protein was present in developing tissues from roots, leaves, flowers, siliques, and seeds, whereas AtBCCP2 protein was primarily expressed in 7 to 10 d-after-flowering seeds at levels approximately 2-fold less abundant than AtBCCP1. AtBCCP1 transcript reflected these protein expression profiles present in all developing organs and highest in 14-d leaves and siliques, whereas AtBCCP2 transcript was present in flowers and siliques. In protein blots, four different BCCP isoforms were detected in developing seeds from oilseed rape. Of these, a 35-kD BCCP was detected in immature leaves and developing seeds, whereas developing seeds also contained 22-, 25-, and 37-kD isoforms highly expressed 21 d after flowering. These data indicate that oilseed plants in the family Brassicaceae contain at least one to three seed-up-regulated BCCP isoforms, depending upon genome complexity.