Two-dimensional thick-slice MR digital subtraction angiography for assessment of cerebrovascular occlusive diseases

Eur Radiol. 2000;10(12):1858-64. doi: 10.1007/s003300000584.

Abstract

Although spatial resolution of current MR angiography is excellent, temporal resolution has remained unsatisfactory. We evaluated clinical applicability of 2D thick-slice, contrast-enhanced subtraction MR angiography (2D-MR digital subtraction angiography) with sub-second temporal resolution in cerebrovascular occlusive diseases. Twenty-five patients with cerebrovascular occlusive diseases (8 moyamoya diseases, 10 proximal internal carotid occlusions, and 2 sinus thromboses ) were studied with a 1.5-T MR unit. The MR digital subtraction angiography (MRDSA) was performed per 0.97 s continuously just after a bolus injection of 15 ml of gadolinium chelates up to 40 s in sagittal (covering hemisphere) or coronal planes. Subtraction images were generated at a workstation. We evaluated imaging quality and hemodynamic information of MRDSA in comparison with those of routine MR imaging, non-contrast MR angiography, and X-ray intra-arterial DSA. Major cerebral arteries, all of the venous sinuses, and most tributaries were clearly visualized with 2D MRDSA. Also, pure arterial phases were obtained in all cases. The MRDSA technique demonstrated prolonged circulation in sinus thromboses, distal patent lumen of proximal occlusion, and some collateral circulation. Such hemodynamic information was comparable to that of intra-arterial DSA. Two-dimensional thick-slice MRDSA with high temporal resolution has a unique ability to demonstrate cerebral hemodynamics equivalent to that of intra-arterial DSA and may play an important role for evaluation of cerebrovascular occlusive diseases.

MeSH terms

  • Adult
  • Aged
  • Angiography, Digital Subtraction
  • Arterial Occlusive Diseases / diagnosis*
  • Arterial Occlusive Diseases / diagnostic imaging
  • Carotid Artery, Internal / diagnostic imaging
  • Carotid Artery, Internal / pathology
  • Carotid Stenosis / diagnosis
  • Carotid Stenosis / diagnostic imaging
  • Cerebral Angiography
  • Cerebral Arteries / pathology
  • Cerebrovascular Circulation
  • Cerebrovascular Disorders / diagnosis*
  • Cerebrovascular Disorders / diagnostic imaging
  • Child
  • Contrast Media
  • Cranial Sinuses / pathology
  • Female
  • Gadolinium
  • Humans
  • Magnetic Resonance Angiography*
  • Male
  • Moyamoya Disease / diagnosis
  • Moyamoya Disease / diagnostic imaging
  • Sinus Thrombosis, Intracranial / diagnosis
  • Subtraction Technique*

Substances

  • Contrast Media
  • Gadolinium