Background: Flow-induced vasodilation (FID) is a physiological mechanism for regulating coronary flow and is mediated largely by nitric oxide (NO) in animals. Because hyperpolarizing mechanisms may play a greater role than NO in the microcirculation, we hypothesized that hyperpolarization contributes importantly to FID of human coronary arterioles.
Methods and results: Arterioles from atria or ventricles were cannulated for videomicroscopy. Membrane potential of vascular smooth muscle cells (VSMCs) was measured simultaneously. After constriction with endothelin-1, increases in flow induced an endothelium-dependent vasodilation. Nomega-Nitro-L-arginine methyl ester 10(-4) mol/L modestly impaired FID of arterioles from patients without coronary artery disease (CAD), whereas no inhibition was seen in arterioles from patients with CAD. Indomethacin 10(-5) mol/L was without effect, but 40 mmol/L KCl attenuated maximal FID. Tetraethylammonium 10(-3) mol/L but not glibenclamide 10(-6) mol/L reduced FID. Charybdotoxin 10(-8) mol/L impaired both FID (15+/-3% versus 75+/-12%, P<0.05) and hyperpolarization (-32+/-2 mV [from -28+/-2 mV after endothelin-1] versus -42+/-2 mV [-27+/-2 mV], P<0.05). Miconazole 10(-6) mol/L or 17-octadecynoic acid 10(-5) mol/L reduced FID. By multivariate analysis, age was an independent predictor for the reduced FID. Conclusions-We conclude that shear stress induces endothelium-dependent vasodilation, hyperpolarizing VSMCs through opening Ca(2+)-activated K(+) channels in human coronary arterioles. In subjects without CAD, NO contributes to FID. NO and prostaglandins play no role in patients with CAD; rather, cytochrome P450 metabolites are involved. This is consistent with a role for endothelium-derived hyperpolarizing factor in FID of the human coronary microcirculation.