Intrahepatic bile duct epithelial cells (i.e., cholangiocytes) are the target cells of chronic cholestatic liver diseases (i.e., cholangiopathies), which makes these cells of great interest to clinical hepatologists. This review will focus on "typical" cholangiocyte proliferation, whereas "atypical" (extension of cholangiocyte proliferation into parenchyma), and premalignant "oval" cell proliferation are reviewed elsewhere. The bile duct ligated (BDL) rat model, where most of the known mechanisms of cholangiocyte proliferation have been illustrated, was the first and remains the prototype animal model for "typical" cholangiocyte proliferation. Following a short overview of cholangiocyte functions, we briefly discuss the: (i) in vivo models [i.e., BDL (Fig. 1 and 4), chronic alpha-naphthylisothiocyanate (ANIT) or bile acid feeding (Fig. 2), acute carbon tetrachloride (CCl4) feeding and partial hepatectomy; and (ii) in vitro experimental tools [e.g., purified cholangiocytes and isolated intrahepatic bile duct units (IBDU)] that are key to the understanding of the mechanisms of "typical" cholangiocyte growth. In the second part of the review, we discuss a number of potential factors or conditions [e.g., gastrointestinal hormones, nerves, estrogens, blood supply, and growth factors] as well as the intracellular mechanisms [e.g., adenosine 3',5'-monophosphate (cAMP), and protein kinase C (PKC)] that may regulate "typical" cholangiocyte hyperplasia.