tRNA-mediated transcription antitermination has been shown to control the expression of several amino acid biosynthesis operons and aminoacyl-tRNA-synthetase-encoding genes in Gram-positive bacteria. A model originally put forward by Grundy & Henkin describes the conserved structural features of the leader sequences of these operons and genes. Two sequences of 3 and 4 nt, respectively, take a central position in this model and are thought to be responsible for the binding of the system-specific uncharged tRNA, an interaction which would stabilize the antiterminator conformation of the leader. Here a further evolution of this model is presented based on an analysis of trp regulation in Lactococcus lactis in which a function is assigned to hitherto unexplained conserved structures in the leader sequence. It is postulated that the mRNA-tRNA interaction involves various parts of the tRNA in addition to the anticodon and the acceptor in the original model and that these additional interactions contribute to the recognition of a specific tRNA, and hence to the specificity and efficacy of the regulatory response.