Increased iron stores are associated with free radical generation and carcinogenesis. Lipid peroxidation is involved in DNA damage, thus indirectly participating in the early steps of tumor initiation. Melatonin and structurally related indoles are effective in protecting against oxidative stress. The aim of the study was to compare the relative efficacies of melatonin, N-acetylserotonin (NAS), indole-3-propionic acid (IPA), and 5-hydroxy-indole-3-acetic acid (5HIAA) in altering basal and iron-induced lipid peroxidation in homogenates of hamster testes. To determine the effect of the indoles on the autoxidation of lipids, homogenates were incubated in the presence of each agent in concentrations of 0.0, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 2.5, or 5.0 mM. To study their effects on induced lipid peroxidation, homogenates were incubated with FeSO(4) (30 microM + H(2)O(2) (0.1 mM) + each of the indoles in the same concentrations as above. The degree of lipid peroxidation was expressed as concentrations of malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) per mg protein. The indoles decreased both basal and iron-related lipid peroxidation in a concentration-dependent manner. Melatonin reduced basal MDA + 4-HDA levels when used at the concentrations of 0.25 mM or higher, and prevented iron-induced lipid peroxidation at concentrations of 1.0, 2.0, 2.5, or 5.0 mM. The lowest effective concentrations of NAS required to lower basal and iron-related lipid peroxidation were 0.05 mM and 0.25 mM, respectively. IPA, only when used in the highest concentrations of 2.5 mM or 5 mM inhibited basal lipid peroxidation levels and it was ineffective on the levels of MDA + 4-HDA due to iron damage. 5HIAA reduced basal lipid peroxidation when used at concentrations of 0.25 mM or higher, and it prevented iron-induced lipid peroxidation only at the highest applied concentration (5 mM). In conclusion, melatonin and related indoles at pharmacological concentrations protect against both the autoxidation of lipids as well as induced peroxidation of lipids in testes. In doing so, these agents would be expected to reduce testicular cancer that is initiated by products of lipid peroxidation.
Copyright 2001 Wiley-Liss, Inc.