Translational initiation of hepatitis C virus (HCV) genome RNA occurs via its highly structured 5' noncoding region called the internal ribosome entry site (IRES). Recent studies indicate that HCV IRES and 40 S ribosomal subunit form a stable binary complex that is believed to be important for the subsequent assembly of the 48 S initiation complex. Ribosomal protein (rp) S9 has been suggested as the prime candidate protein for binding of the HCV IRES to the 40 S subunit. RpS9 has a molecular mass of approximately 25 kDa in UV cross-linking experiments. In the present study, we examined the approximately 25-kDa proteins of the 40 S ribosome that form complexes with the HCV IRES upon UV cross-linking. Immunoprecipitation with specific antibodies against two 25-kDa 40 S proteins, rpS5 and rpS9, clearly identified rpS5 as the protein bound to the IRES. Thus, our results support rpS5 as the critical element in positioning the HCV RNA on the 40 S ribosomal subunit during translation initiation.