RON is a transmembrane receptor tyrosine kinase that mediates biological activities of Macrophage Stimulating Protein (MSP). MSP is a multifunctional factor regulating cell adhesion, motility, growth and survival. MSP binding to RON causes receptor tyrosine phosphorylation leading to up-regulation of RON catalytic activity and subsequent activation of downstream signaling molecules. Recent studies show that RON is spatially and functionally associated with other transmembrane molecules including adhesion receptors integrins and cadherins, and cytokine and growth factor receptors IL-3 betac, EPOR and MET. For example, MSP-induced cell shape change is mediated via RON-activated IL-3 betac receptor. Activation of integrins causes MSP-independent RON phosphorylation, and the integrin/RON collaboration regulates cell survival. Thus, RON can be activated without MSP by ligand stimulation of RON-associated receptors, and MSP-activated RON can cause ligand-independent activation of RON-associated receptors. As a result of the receptor cross-activation RON-specific pathways become a part of a signal transduction network of other receptors, and conversely signaling pathways activated by other receptors can be used by RON. This receptor collaboration extends the spectrum of cellular responses generated by MSP and by putative ligands of RON-associated receptors. However signaling pathways involved in the receptor cross-talk and underlying activation mechanisms remain to be investigated. The purpose of this review is to summarize data and to discuss a role of cross-talk between RON and other transmembrane receptors.