During development, neuropilin-1 is a receptor for semaphorin 3a-mediated axonal guidance and for vascular endothelial growth factor (VEGF) promotion of angiogenesis. The authors measured neuropilin-1 expression in the adult ischemic brain using Northern blot, in situ hybridization, and immunohistochemistry. Neuropilin-1 mRNA was significantly up-regulated as early as 2 hours and persisted at least 28 days after focal cerebral ischemia. Acute up-regulation of neuropilin-1 mRNA primarily localized to the ischemic neurons. A marked increase in both mRNA and protein of neuropilin-1 was detected in endothelial cells of cerebral blood vessels at the border and in the core of the ischemic lesion 7 days after ischemia, and neuropilin-1 gene expression persisted on these vessels for at least 28 days after ischemia. In these areas, neovascularization was detected using three-dimensional reconstructed images obtained from laser scanning confocal microscopy. Activated astrocytes also exhibited neuropilin-1 immunoreactivity during 7 to 28 days of ischemia. Double immunofluorescent staining showed colocalization of neuropilin-1 and VEGF to cerebral blood vessels and activated astrocytes. These data suggest that in addition to its role in axonal growth, up-regulation of neuropilin-1, in concert with VEGF and its receptors, may contribute to neovascular formation in the adult ischemic brain.