Corticotropin releasing hormone (CRH) stimulates pituitary ACTH secretion through type-1 CRH (CRH1) receptors. Stimulation of the hypothalamic pituitary adrenal (HPA) axis as well as increased corticotroph responsiveness during stress and adrenalectomy are associated with marked pituitary CRH binding downregulation. The presence of CRH1 receptors in the pituitary are essential to maintain ACTH secretion. Downregulation of CRH binding is associated with normal or elevated levels of CRH1 receptor mRNA and this may contribute to the maintainence of permissive levels of CRH1 receptors in the pituitary. Injection of either CRH or glucocorticoids in rats in vivo induces CRH binding and CRH1 receptor mRNA downregulation, whereas their simultaneous administration causes only transient CRH1 receptor mRNA loss. Vasopressin increases CRH1 receptor mRNA levels. This suggest that interactions between CRH, vasopressin and glucocorticoids accounts for CRH1 receptor mRNA upregulation during stress. The lack of correlation between CRH binding and CRH1 receptor mRNA indicates that the major sites for pituitary CRH1 receptor regulation are at the post-transcriptional level.