The self-assembly film fabricated via the layer-by-layer technique was studied by the dynamic contact angle (DCA) method (wilhelmy plate method). The used polyelectrolytes are poly(diallyl-dimethylammonium chloride) (PDDA), poly(etheleneimine) (PEI), diphenylamine-4-diazonium-formaldehyde resin (DR), 2-nitro-N-methyl-4-diazonium-formaldehyde resin (NDR), and poly(sodium-p-styrenesulfonate) (PSS). For the self-assembly systems of PDDA/PSS, PEI/PSS, DR/PSS, and NDR/PSS, their individual contact angle fluctuates regularly with the fabrication of each layer, while the magnitude of different systems' contact angle depends on the participant polycation. The re-organization of components and the adjacent layer interpenetration are presented here to explain this phenomena. We also found that DR or NDR can adsorb itself via the layer-by-layer method to form multilayer film, and the hydrophobic interaction is put forward to effect this process. Moreover, the procedure of washing and drying after adsorption was studied and considered as a prerequisite for the successful fabrication, especially of the same charge carried components. Copyright 2001 Academic Press.