Immersion precipitation was employed as a method for the fabrication of polymeric conduits from P(BHET-EOP/TC), a poly(phosphoester) with an ethylene terephthalate backbone, to be applied as guidance channels for nerve regeneration. Coatings of various porosities could be obtained by immersing mandrels coated with a solution of the polymer in chloroform into non-solvent immersion baths, followed by freeze or vacuum-drying. The porosity of the coatings decreased with an increase in polymer molecular weight, drying time before precipitation and concentration of polymer solution. The effects of these parameters can be rationalized by employing ternary phase diagrams, where porosity is directly related to the degree of phase separation available to the system before gelation occurs. To afford improved porosity control, a new system was developed which employed the contrasting phase-separation behavior of P(BHET-EOP/TC)/chloroform solution in methanol and water. As water is essentially a non-solvent for the polymer, the demixing boundary of the P(BHET-EOP/TC)-CHCl3-H2O system is located close to the polymer-solvent edge of the phase diagram, while that of the P(BHET-EOP/TC)-CHCl3-MeOH system is located further away. A mixture of methanol and water allows the demixing boundary to be shifted to intermediate coordinates. By immersing P(BHET-EOP/TC) coatings in immersion baths containing different ratios of water and methanol, then gradually titrating the bath with methanol to a concentration of 70% (v/v) methanol, surface porosities ranging from 2 to 58% could be achieved.