Selective inhibition of the renal angiotensin type 2 receptor increases blood pressure in conscious rats

Hypertension. 2001 May;37(5):1285-91. doi: 10.1161/01.hyp.37.5.1285.

Abstract

The angiotensin II type 2 (AT(2)) receptor is present in rat kidney; however, its function is not well understood. The purpose of this study was to evaluate the role of the AT(2) receptor in blood pressure (BP) regulation. The effects of selective inhibition of the renal AT(2) receptor with phosphorothioated antisense oligodeoxynucleotide (AS-ODN) were examined in conscious uninephrectomized rats. Oligodeoxynucleotides (AS-ODN or scrambled [S-ODN]) were infused directly into the renal interstitial space by using an osmotic pump at 1 microL/h for 7 days. Texas red-labeled AS-ODN was distributed in renal tubules in the infused but not the contralateral kidney of normal rats. Continuous renal interstitial infusion of the AS-ODN, but not S-ODN, caused a significant (P<0.01) increase in BP 1 to 5 days after the initiation of the infusion. AS-ODN-treated rats experienced an increase in systolic BP from 109+/-4 to 130+/-4 mm Hg (n=8, P<0.01), whereas S-ODN-treated (n=8) and vehicle-treated (n=8) rats did not show any significant change in BP. On day 5 of the oligodeoxynucleotide infusion, AS-ODN-treated rats exhibited a greater pressor response to systemic angiotensin II infusion (30 ng/kg per hour) than did S-ODN-treated rats (P<0.01). Renal interstitial fluid cGMP decreased from 11.9+/-0.8 to 3.6+/-0.5 pmol/mL (P<0.001), and bradykinin decreased from 0.05+/-0.05 to 0.18+/-0.03 ng/mL (P<0.001) in response to AS-ODN, but they were not significantly changed in response to S-ODN. To evaluate the effects of AS-ODN and S-ODN on AT(2) receptor expression, Western Blot analysis was performed on treated kidneys. Kidneys treated with AS-ODN had approximately 40% less expression of AT(2) receptor than did kidneys treated with S-ODN or vehicle (P<0.05). These results suggest that AS-ODN directed selectively against the renal AT(2) receptor decreased receptor expression and caused an increase in BP. We conclude that the renal AT(2) receptor plays an important role in the regulation of BP via a bradykinin/cGMP vasodilator signaling cascade.

MeSH terms

  • Actins / analysis
  • Actins / genetics
  • Angiotensin I / analysis
  • Angiotensin I / genetics
  • Angiotensin II / analysis
  • Angiotensin II / genetics
  • Angiotensin Receptor Antagonists*
  • Animals
  • Autacoids / metabolism
  • Blood Pressure / drug effects*
  • Blotting, Western
  • Bradykinin / metabolism
  • Cyclic GMP / metabolism
  • Female
  • Kidney / drug effects*
  • Kidney / metabolism
  • Kidney / physiology
  • Oligodeoxyribonucleotides, Antisense / pharmacology*
  • RNA, Messenger / drug effects
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Angiotensin, Type 1
  • Receptor, Angiotensin, Type 2
  • Receptors, Angiotensin / genetics
  • Receptors, Angiotensin / physiology

Substances

  • Actins
  • Angiotensin Receptor Antagonists
  • Autacoids
  • Oligodeoxyribonucleotides, Antisense
  • RNA, Messenger
  • Receptor, Angiotensin, Type 1
  • Receptor, Angiotensin, Type 2
  • Receptors, Angiotensin
  • Angiotensin II
  • Angiotensin I
  • Cyclic GMP
  • Bradykinin