The oxidative stress resulting from the neurogenic ataxia retinitis pigmentosa (NARP) mutation in the mitochondrial ATPase 6 gene was investigated in cultured skin fibroblasts from two patients presenting an isolated complex V deficiency. Taken as an index for superoxide overproduction, a huge induction of the superoxide dismutase (SOD) activity was observed in these fibroblasts harboring >90% of mutant mitochondrial DNA. The oxidative stress denoted by the high SOD activity was associated with increased cell death. In glucose-rich medium, apoptosis appeared as the main cell death process associated with complex V deficiency. Complex V-deficient fibroblasts, which showed a high SOD induction and stained positive for all studied apoptosis markers, were successfully rescued by perfluoro-tris-phenyl nitrone, an antioxidant spin-trap molecule. This established that the superoxide production associated with the ATPase deficiency triggered by the NARP mutation could be sufficient to override cell antioxidant defenses and to result in cell commitment to die. The potential participation of superoxides and/or their derivatives in the pathogenic mechanism of specific respiratory chain disorders makes them a promising target for therapy.