H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22)

Blood. 2001 Jun 15;97(12):3910-8. doi: 10.1182/blood.v97.12.3910.

Abstract

The molecular cloning of the t(5;10)(q33;q22) associated with atypical chronic myeloid leukemia (CML) is reported. Fluorescence in situ hybridization (FISH), Southern blot, and reverse transcriptase- polymerase chain reaction analysis demonstrated that the translocation resulted in an H4/platelet-derived growth factor receptor betaR (PDGFbetaR) fusion transcript that incorporated 5' sequences from H4 fused in frame to 3' PDGFbetaR sequences encoding the transmembrane, WW-like, and tyrosine kinase domains. FISH combined with immunophenotype analysis showed that t(5;10)(q33;q22) was present in CD13(+) and CD14(+) cells but was not observed in CD3(+) or CD19(+) cells. H4 has previously been implicated in pathogenesis of papillary thyroid carcinoma as a fusion partner of RET. The H4/RET fusion incorporates 101 amino acids of H4, predicted to encode a leucine zipper dimerization domain, whereas the H4/PDGFbetaR fusion incorporated an additional 267 amino acids of H4. Retroviral transduction of H4/PDGFbetaR, but not a kinase-inactive mutant, conferred factor-independent growth to Ba/F3 cells and caused a T-cell lymphoblastic lymphoma in a murine bone marrow transplantation assay of transformation. Mutational analysis showed that the amino-terminal H4 leucine zipper domain (amino acids 55-93), as well as H4 amino acids 101 to 386, was required for efficient induction of factor-independent growth of Ba/F3 cells. Tryptophan-to-alanine substitutions in the PDGFbetaR WW-like domain at positions 566/593, or tyrosine-to-phenylalanine substitutions at PDGFbetaR positions 579/581 impaired factor-independent growth of Ba/F3 cells. H4/PDGFbetaR is an oncoprotein expressed in t(5;10)(q33;q22) atypical CML and requires dimerization motifs in the H4 moiety, as well as residues implicated in signal transduction by PDGFbetaR, for efficient induction of factor-independent growth of Ba/F3 cells. (Blood. 2001;97:3910-3918)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Carcinoma, Papillary / genetics*
  • Cell Transformation, Neoplastic / genetics
  • Chromosomes, Human, Pair 10* / genetics
  • Chromosomes, Human, Pair 5* / genetics
  • Cloning, Molecular
  • Cytogenetic Analysis
  • Cytoskeletal Proteins
  • DNA, Neoplasm / genetics
  • DNA, Neoplasm / isolation & purification
  • Gene Rearrangement
  • Humans
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / etiology
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology
  • Mutagenesis
  • Myeloid Cells / metabolism
  • Myeloid Cells / pathology
  • Oncogene Proteins, Fusion
  • Protein Structure, Tertiary
  • Proteins / genetics*
  • Proteins / metabolism
  • Receptor, Platelet-Derived Growth Factor beta / genetics*
  • Thyroid Neoplasms / genetics*
  • Transfection
  • Translocation, Genetic*

Substances

  • CCDC6 protein, human
  • Cytoskeletal Proteins
  • DNA, Neoplasm
  • Oncogene Proteins, Fusion
  • Proteins
  • Receptor, Platelet-Derived Growth Factor beta