Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are selective for human immunodeficiency virus type 1 (HIV-1) and generally not effective on HIV-2 or simian immunodeficiency virus (SIV). Only SIVagm was found to be sensitive to NNRTIs. When the amino acid differences in RT between SIVmac and SIVagm were compared with the known amino acid substitutions of NNRTI-resistance variants of HIV-1, we came to consider that the amino acid residue Leu-188 of HIV-2 and SIVmac might be related to their resistance to NNRTIs. To test this hypothesis, we substituted Leu-188 to Cys or Tyr in HIV-2 and SIVmac, and examined sensitivity of the mutant molecular clones to NNRTIs. The L188Y mutant of HIV-2 became completely sensitive to delavirdine and efavirenz, while that of SIVmac was also significantly sensitive to these NNRTIs. We further isolated NNRTI-resistant variants from these mutant viruses and determined amino acid substitutions in RT. The roles of the observed substitutions in NNRTI-resistance were further confirmed by site-directed mutagenesis. Our study reveals the crucial role of L188 in the natural resistance of HIV-2 and SIVmac to NNRTIs. Furthermore, the observed substitutions in RT of HIV-2 and SIVmac support the common mechanism of action of NNRTIs against HIV-1, HIV-2 and SIV.