To understand the cellular and molecular mechanisms by which neurotensin (NT) induces an analgesic effect in the nucleus raphe magnus (NRM), whole-cell patch-clamp recordings were performed to investigate the electrophysiological effects of NT on acutely dissociated NRM neurons. Two subtypes of neurons, primary serotonergic and secondary non-serotonergic cells, were identified from acutely isolated NRM neurons. During current-clamp recordings, NT depolarized NRM serotonergic neurons and evoked action potentials. Voltage-clamp recordings showed that NT excited serotonergic neurons by enhancing a voltage-insensitive and non-selective cationic conductance. Both SR48692, a selective antagonist of subtype 1 neurotensin receptor (NTR-1), and SR 142948A, a non-selective antagonist of NTR-1 and subtype 2 neurotensin receptor (NTR-2), failed to prevent neurotensin from exciting NRM serotonergic neurons. NT-evoked cationic current was inhibited by the intracellular administration of GDP-beta-S. NT failed to induce cationic currents after dialyzing serotonergic neurons with the anti-G(alphaq/11) antibody. Cellular Ca(2+) imaging study using fura-2 showed that NT induced the calcium release from the intracellular store. NT-evoked current was blocked after the internal perfusion of heparin, an IP(3) receptor antagonist, or BAPTA, a fast Ca(2+) chelator. It is concluded that neurotensin enhancement of the cationic conductance of NRM serotonergic neurons is mediated by a novel subtype of neurotensin receptors. The coupling mechanism via G(alphaq/11) proteins is likely to involve the generation of IP(3), and subsequent IP(3)-evoked Ca(2+) release from intracellular stores results in activating the non-selective cationic conductance.