Huntington's disease (HD) is caused by an expanded CAG repeat in exon 1 of the gene coding for the huntingtin protein. The cellular pathway by which this mutation induces HD remains unknown, although alterations in protein degradation are involved. To study intrinsic cellular mechanisms linked to the mutation, we examined dissociated postnatally derived cultures of striatal neurons from transgenic mice expressing exon 1 of the human HD gene carrying a CAG repeat expansion. While there was no difference in cell death between wild-type and mutant littermate-derived cultures, the mutant striatal neurons exhibited elevated cell death following a single exposure to a neurotoxic concentration of dopamine. The mutant neurons exposed to dopamine also exhibited lysosome-associated responses including induction of autophagic granules and electron-dense lysosomes. The autophagic/lysosomal compartments co-localized with high levels of oxygen radicals in living neurons, and ubiquitin. The results suggest that the combination of mutant huntingtin and a source of oxyradical stress (provided in this case by dopamine) induces autophagy and may underlie the selective cell death characteristic of HD.