To understand more fully the early bone changes in an experimental model of osteoarthrosis, we quantified periarticular bone mineral density and bone mechanical properties in anterior cruciate ligament transected (ACLX) knee joints (4, 10, 32, and 39 wk post-ACLX) compared with contralateral joints and unoperated normal joints of skeletally mature animals. Maximal stress and energy were significantly reduced in ACLX cancellous bone from the medial femoral condyles at 4 wk postinjury. All mechanical properties (e.g., yield stress and elastic modulus) declined after 4 wk and were significantly reduced at 10 wk. ACLX bone mineral density was significantly reduced at all measured time points. Ash content was significantly reduced at 10 and 32 wk. Changes in the lateral condyles were similar but less pronounced than in the medial condyles. These bony changes accompanied the earliest articular cartilage molecular changes and preceded changes in the articular cartilage gross morphology. We suggest that these early changes in bone mechanical behavior contribute to the progression of osteoarthrosis and pathogenic changes in the joint.