The multiplicity of mechanisms involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in smooth muscle results in both intra- and intercellular heterogeneities in [Ca(2+)](i). Heterogeneity in [Ca(2+)](i) regulation is reflected by the presence of spontaneous, localized [Ca(2+)](i) transients (Ca(2+) sparks) representing Ca(2+) release through ryanodine receptor (RyR) channels. Ca(2+) sparks display variable spatial Ca(2+) distributions with every occurrence within and across cellular regions. Individual sparks are often grouped, and fusion of sparks produces large local elevations in [Ca(2+)](i) that occasionally trigger propagating [Ca(2+)](i) waves. Ca(2+) sparks may modulate membrane potential and thus smooth muscle contractility. Sparks may also be the target of other regulatory factors in smooth muscle. Agonists induce propagating [Ca(2+)](i) oscillations that originate from foci with high spark incidence and also represent Ca(2+) release through RyR channels. With increasing agonist concentration, the peak of regional [Ca(2+)](i) oscillations remains relatively constant, whereas both frequency and propagation velocity increase. In contrast, the global cellular response appears as a concentration-dependent increase in peak as well as mean cellular [Ca(2+)](i), representing a spatial and temporal integration of the oscillations. The significance of agonist-induced [Ca(2+)](i) oscillations lies in the establishment of a global [Ca(2+)](i) level for slower Ca(2+)-dependent physiological processes.