Apoptosis is a physiological counterbalance to mitosis and plays important roles in tissue development and homeostasis. Cytosolic Ca(2+) has been implicated as a proapoptotic second messenger involved in both triggering apoptosis and regulating cell death-specific enzymes. A critical early event in apoptosis is associated with the redistribution of Bax from cytosol to mitochondria and endoplasmic reticulum (ER) membranes; however, the molecular mechanism of Bax translocation and its relationship to Ca(2+) is largely unknown. Here we provide functional evidence for a synergistic interaction between the movements of intracellular Ca(2+) and cytosolic Bax in the induction of apoptosis. Overexpression of Bax in cultured cells causes a loss of ER Ca(2+) content. Depletion of ER Ca(2+) through activation of the ryanodine receptor enhances the participation of Bax into the mitochondrial membrane. Neither Bax translocation nor Bax-induced apoptosis is affected by buffering of cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, suggesting that depletion of ER Ca(2+) rather than elevation of cytosolic Ca(2+) is the signal for cell apoptosis. This dynamic interplay of Ca(2+) and Bax movements may serve as an amplifying factor in the initial signaling steps of apoptosis.