Several genetic polymorphisms are implicated as determinants of bone mineral density (BMD) in postmenopausal women. These include the Sp1 polymorphism of the collagen type I alpha 1 (COLIA1) gene, the FokI and BsmI polymorphisms of the vitamin D receptor (VDR) gene, and the PvuII and XbaI polymorphisms of the estrogen receptor (ER) gene. The relative importance and the independence of these genetic effects have not been studied simultaneously in the same population. We evaluated the effects of these polymorphisms on lumbar spine BMD among 154 postmenopausal Greek women. BMD tended to differ across Sp1 genotypes (mean 0.842 g/cm2 in SS, 0.851 g/cm2 in Ss, 0.763 in ss, age-adjusted p = 0.056), mostly because ss homozygotes had lower BMD (p = 0.018 compared with SS and Ss). No other polymorphisms were associated with BMD in this population (p = 0.53 for FokI, p = 0.94 for BsmI, p = 0.80 for PvuII, p = 0.91 for XbaI). In multivariate modeling, the effect of ss homozygosity was clinically and statistically significant (-0.105 g/cm2, p = 0.013) after adjusting for age, weight, height, hormone replacement use, and the other four polymorphisms. None of the other four polymorphisms was retained as an independent predictor of BMD in a backward elimination model and no significant synergistic effects were observed when gene interactions were tested. When all five polymorphisms are considered simultaneously, the Sp1 COLIA1 polymorphism seems to have the most unequivocal effect on BMD, at least in postmenopausal women.