Rooted cuttings from two poplar clones (Populus x euramericana, I-214, and Populus deltoides x maximowiczii, Eridano) were exposed for 15 days to diurnal square-wave treatment with ozone (60 nL L-1 for 5 h day-1). Completely fully expanded leaves exposed to ozone showed a reduction in net CO2 assimilation rate as compared to the control leaves during whole exposure period in both the clones. The reduction was related to a strong stomatal closure in clone I-214, but also to an altered mesophyll activity ascribed to limitation of the dark reactions of photosynthetic process. The results obtained in leaves of I-214 subjected to long-term fumigation seem to support the view that the decrease in quantum yield of electron transport may be a mechanism to down-regulate photosynthetic electron transport so that production of ATP and NADPH would be in equilibrium with the decreased demand in the Calvin cycle. In Eridano the CO2 assimilation was reduced because of the exposure and any alteration in stomatal conductance was observed. Thus, chlorophyll fluorescence parameters showed that an inhibition of photosystem II had occurred (reduction in Fv/Fm ratio), while no alterations in quenching parameters were observed upon illumination. The results seem to indicate that an alternative sink for reducing equivalent, other than carbon metabolism is present.