Kaposi's sarcoma (KS) develops through discrete inflammatory-angiogenic stages of polyclonal nature (early-stage lesions) to monomorphic nodules of spindle-shaped cells that can be clonal (late-stage lesions) and resemble true sarcomas. Molecular and epidemiological studies indicate that development of KS is tightly associated with infection by the human herpesvirus-8 (HHV-8). However, only individuals with specific conditions of immunodysregulation develop KS. In these individuals the systemic and tissue increase of Th-1-type cytokines (IC) reactivate HHV-8 infection, leading to increased viral load, antibody titers, and an expanded cell tropism that precedes the clinical appearance of KS. Recruitment of the virus into tissues by infected monocytes and other cell types is facilitated by the endothelial cell activation due to IC. In clinical lesions, HHV-8 infection increases with lesion stage and in late-stage lesions most of the spindle cells are latently infected, whereas only few lyrically infected cells are present, suggesting that latent genes may have a role in the transformation of the early inflammatory-hyperplastic lesion into a real sarcoma. The development of tumors, however, is regulated through a multistep process based on the acquisition by cells of several different capabilities leading to malignant growth. Here we review the available data on the expression of HHV-8-encoded genes in primary KS lesions and, in view of their biological activity, analyze their potential function in different steps of tumorigenesis. By this pragmatic approach interesting insights into potential key functions of HHV-8-encoded genes are found and steps of potential cooperativity with other viral factors (HIV-1-Tat) in the pathogenesis of KS are identified.