Background: Several indications exist to suggest that an impaired production of nitric oxide might have a role in the development of salt-sensitive hypertension.
Objective: To examine whether the gene expression of the nitric oxide synthases (NOS) is altered in the salt-sensitive Dahl rat compared with that in the salt-resistant Dahl rat.
Design and methods: The abundance of NOS mRNA was measured by RNase protection assay in different organs of salt-resistant and salt-sensitive Dahl rats. In addition, the zonal expression of NOS genes in the kidney under salt load and salt restriction was determined.
Results: The abundance of endothelial NOS mRNA was similar between the salt-resistant and salt-sensitive Dahl rat strains in all organs. Inducible NOS mRNA was not detectable by RNase protection assay in any organ. Neuronal NOS (nNOS) mRNA expression, however, was about 50% lower in brain and kidney of salt-sensitive Dahl rats than in salt-resistant Dahl rats. Within the kidney, nNOS mRNA levels were significantly decreased in salt-sensitive Dahl rats compared with those in salt-resistant Dahl rats, in cortex, outer and inner medulla (50, 40 and 30%, respectively) under all dietary conditions. A comparison of renal nNOS gene expression in Dahl rats with that in salt-insensitive Sprague- Dawley rats revealed that the abundance of renal nNOS was similar in salt-sensitive Dahl and Sprague-Dawley rats, but was increased in salt-resistant Dahl rats relative to that in Sprague-Dawley rats.
Conclusion: These data suggest that nNOS gene expression is increased in salt-resistant Dahl rats compared with that in salt-sensitive Dahl rats. This increased nNOS expression of the salt-resistant Dahl strain might play a part in compensating for a defect of renal salt excretion in the Dahl strains.