Hippocampal inhibitory interneurons play important roles in controlling the excitability and synchronization of pyramidal cells, but whether they express long-term synaptic plasticity that contributes to hippocampal network function remains uncertain. We found that pairing postsynaptic depolarization with theta-burst stimulation induced long-term potentiation (LTP) of putative single-fiber excitatory postsynaptic currents in interneurons. Either postsynaptic depolarization or theta-burst stimulation alone failed to induce LTP. LTP was expressed as a decrease in failure rates and an increase in excitatory postsynaptic current amplitude, independent of N-methyl-d-aspartate receptors, and dependent on metabotropic glutamate receptors subtype 1a. LTP was induced specifically in interneurons in stratum oriens and not in interneurons of stratum radiatum/lacunosum-moleculare. Thus, excitatory synapses onto specific subtypes of inhibitory interneurons express a new form of hebbian LTP that will contribute to hippocampal network plasticity.