Large anhydrous polyalanine ions: evidence for extended helices and onset of a more compact state

J Am Chem Soc. 2001 Feb 21;123(7):1490-8. doi: 10.1021/ja9940625.

Abstract

Ion mobility measurements and molecular modeling calculations have been used to examine the conformations of large multiply charged polyalanine peptides. Two series of [Ala(n)+3H](3+) conformations which do not interconvert during the 10 to 30 ms experimental timescales are observed: a family of elongated structures for n = 18 to 39 and a series of more compact conformations for n = 24 to 41. The more compact state becomes the dominant conformer type for n > 32. Molecular modeling studies and comparisons of calculated collision cross sections with experiment indicate that the elongated ions have extended helical conformations. We suggest that the more compact state corresponds to a new conformer type: a folded hinged helix-coil state in which helical and coil regions have similar physical dimensions. The competition between extended and compact states is rationalized by considering differences in charge stabilization and entropy.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Models, Molecular
  • Peptides / chemistry*
  • Protein Conformation
  • Protein Folding
  • Protein Structure, Secondary

Substances

  • Peptides
  • polyalanine