Stereochemical, structural, and thermodynamic origins of stability differences between stereoisomeric benzo[a]pyrene diol epoxide deoxyadenosine adducts in a DNA mutational hot spot sequence

J Am Chem Soc. 2001 Jul 25;123(29):7054-66. doi: 10.1021/ja0043035.

Abstract

Benzo[a]pyrene (BP), a prototype polycyclic aromatic hydrocarbon (PAH), can be metabolically activated to the enantiomeric benzo[a]pyrene diol epoxides (BPDEs), (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene and the (-)-(7S,8R,9R,10S) enantiomer. These can react with adenine residues in DNA, to produce the stereoisomeric 10S (+)- and 10R (-)-trans-anti-[BP]-N(6)-dA adducts. High-resolution NMR solution studies indicate that in DNA duplexes the 10R (-) adduct is intercalated on the 5'-side of the modified adenine, while the 10S (+) adduct is disordered, exhibits multiple adduct conformations, and is positioned on the 3'-side of the modified adenine. Duplexes containing the 10S (+) adduct positioned at A within codon 61 of the human N-ras sequence CAA are thermodynamically less stable and more easily excised by human DNA repair enzymes than those containing the 10R (-) adduct. However, the molecular origins of these differences are not understood and represent a fascinating opportunity for elucidating structure-function relationships. We have carried out a computational investigation to uncover the structural and thermodynamic origins of these effects in the 11-mer duplex sequence d(CGGACAAGAAG).d(CTTCTTGTCCG) by performing a 2-ns molecular dynamics simulation using NMR solution structures as the basis for the starting models. Then, we applied the MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method to compute free energy differences between the stereoisomeric adducts. The 10R (-) isomer is more stable by approximately 13 kcal/mol, of which approximately 10 kcal/mol is enthalpic, which agrees quite well with their observed differences in thermodynamic stability. The lower stability of the 10S (+) adduct is due to diminished stacking by the BP moiety in the intercalation pocket, more helix unwinding, and a diminished quality of Watson-Crick base pairing. The latter stems from conformational heterogeneity involving a syn-anti equilibrium of the glycosidic bond in the modified adenine residue. The lower stability and conformational heterogeneity of the 10S (+) adduct may play a role in its enhanced susceptibility to nucleotide excision repair.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide / chemistry*
  • Adenine / chemistry
  • Base Sequence
  • Carcinogens, Environmental / chemistry
  • DNA Adducts / chemistry*
  • Drug Stability
  • Humans
  • Intercalating Agents / chemistry
  • Models, Molecular
  • Mutagens / chemistry
  • Polycyclic Aromatic Hydrocarbons / chemistry
  • Stereoisomerism
  • Thermodynamics

Substances

  • Carcinogens, Environmental
  • DNA Adducts
  • Intercalating Agents
  • Mutagens
  • Polycyclic Aromatic Hydrocarbons
  • benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide-DNA
  • 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
  • Adenine