Temporal spatial differences observed by functional MRI and human intraoperative optical imaging

Cereb Cortex. 2001 Aug;11(8):773-82. doi: 10.1093/cercor/11.8.773.

Abstract

Pre-operative functional magnetic resonance imaging (fMRI), cortical evoked potentials (EPs) and intraoperative optical imaging of intrinsic signals (iOIS) were employed to relate the temporal-spatial characteristics of sensorimotor responses in human brain. Peripheral somasthetic stimulation (2 s) was provided either by a 110 Hz finger vibrator or transcutaneous median nerve stimulation in eight patients undergoing neurosurgical procedures. Each technique provided unique spatial patterns and temporal response profiles. EPs and iOIS activities were observed over the surface of pre- and post-central gyri (at the level of the superior genu) with very similar spatial distributions. In contrast, fMRI spatial distributions depended upon the model used for statistical correlation analysis. Using a monophasic response model, fMRI primarily localized within the central sulcus and did not demonstrate large signal changes over the pre- and post-central gyri (areas with iOIS/EP activity). However, as initial negative responses were incorporated into the response model, fMRI progressively localized closer to the iOIS and somatosensory EP maps. Temporally, responses to single stimuli differed between the fMRI and iOIS techniques. Using a monophasic model for fMRI analysis, the total fMRI response was delayed by 2--3 s relative to iOIS. As initial negative responses were incorporated in the analysis, the fMRI time course developed temporal characteristics similar to iOIS. Ultimately, when fMRI time courses were examined over pixels co-localizing with iOIS activation (without using statistical correlation analysis), the fMRI temporal profile included an initial decrease in signal (an initial dip) that closely resembled the time course of iOIS response. This is the first study to experimentally co-localize (temporally and spatially) iOIS and fMRI signals in human subjects. The spatial/temporal differences in this study likely reflect the capillary versus venous contributions of iOIS and fMRI, respectively. The temporal/spatial co-localization of the iOIS signal and the fMRI initial dip suggests the initial fMRI dip and the iOIS signal may result from similar physiologic events.

Publication types

  • Clinical Trial
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Anesthesia, General
  • Brain Mapping
  • Cerebral Cortex / anatomy & histology*
  • Cerebral Cortex / physiology*
  • Electric Stimulation
  • Electrophysiology
  • Evoked Potentials, Somatosensory / physiology
  • Fingers / innervation
  • Fingers / physiology
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Physical Stimulation
  • Somatosensory Cortex / physiology
  • Time Factors