The molecular alterations in tumour cells leading to resistance towards apoptosis induced by CD95 and TRAIL-receptors are not fully understood. We report here that the stimulation of the CD95- and TRAIL-resistant human pancreatic adenocarcinoma cell line PancTuI with an agonistic anti-CD95 antibody or TRAIL resulted in activation of protein kinase C and NF-kappaB. Inhibition of protein kinase C by Gö6983 sensitized these cells to apoptotic challenges and strongly diminished activation of NF-kappaB by anti-CD95 and TRAIL. Similarly, inhibition of NF-kappaB by MG132 or by transient transfection with a dominant negative mutant of IkappaBalpha restored the responsiveness of PancTuI cells to both death ligands. In the CD95 and TRAIL-sensitive cell line Colo357 the induction of protein kinase C and NF-kappaB following activation of CD95 and TRAIL-R was very moderate compared with PancTuI cells. However, pre-incubation of these cells with PMA strongly reduced their apoptotic response to anti-CD95 and TRAIL. Taken together, we show that activation of protein kinase C operates directly in a death receptor-dependent manner in PancTuI cells and protect pancreatic tumour cells from anti-CD95 and TRAIL-mediated apoptosis by preventing the loss DeltaPsim and Cytochrome c release as well as by induction of NF-kappaB.