Background: This report describes a new closed-loop control system for propofol that uses the Bispectral Index (BIS) as the controlled variable in a patient-individualized, adaptive, model-based control system, and compares this system with manually controlled administration of propofol using hemodynamic and somatic changes to guide anesthesia.
Methods: Twenty female patients, American Society of Anesthesiologists physical status I or II, who were scheduled for gynecologic laparotomy were included to receive propofolremifentanil anesthesia. In group I, propofol was titrated using a BIS-guided, model-based, closed-loop system. The BIS target was set at 50. In group II, propofol was titrated using classical hemodynamic signs of (in)adequate anesthesia. Performance of control during induction and maintenance of anesthesia were compared between both groups using BIS as the controlled variable in group I and the reference variable in group II, and, conversely, the systolic blood pressure as the controlled variable in group II and the reference variable in group I. At the end of anesthesia, recovery profiles between groups were compared.
Results: Although patients undergoing manual induction of anesthesia in group II at 300 ml/h reached a BIS level of 50 faster than patients undergoing open-loop, computer-controlled induction in group I, manual induction caused a more pronounced initial overshoot of the BIS target. This resulted in a more pronounced decrease in blood pressure in group II. During the maintenance phase, better control of BIS and systolic blood pressure was found in group I compared with group II. Recovery was faster in group I.
Conclusion: A closed-loop system for propofol administration using the BIS as a controlled variable together with a model-based controller is clinically acceptable during general anesthesia.