Objective: Octreotide, a somatostatin analogue, has been shown to prevent angiogenesis in diverse in vitro models. We evaluated its effect on retinal neovascularization in vivo, using a neonatal rat retinopathy model.
Methods: We used, on alternating days, hypoxia (10% O2) and hyperoxia (50% O2) during the first 14 days of neonatal rats, to induce retinal neovascularization. Half of the rats were injected subcutaneously with octreotide 0.7 microg/g BW twice daily. At day 18 the eyes were evaluated for the presence of epiretinal and vitreal hemorrhage, neovascularization and epiretinal proliferation. Octreotide pharmacokinetics and its effect on serum growth hormone (GH) and insulin-like growth factor I (IGF-I) were examined in 28 rats.
Results: Serum octreotide levels were 667 microg/l two hours after injection, 26.4 microg/l after nine hours and 3.2 microg/l after 14 hours. GH levels were decreased by 40% (p = 0.002) two hours after injection but thereafter returned to baseline. IGF-I levels were unchanged two hours after injection and were elevated by 26% 14 hours after injection (p = 0.02). Epiretinal membranes were highly associated with epiretinal hemorrhages (p < 0.001), while retinal neovascularization was notably associated with vitreal hemorrhages (p < 0.001).
Conclusions: Twice-daily injections of octreotide failed to produce sustained decrease in serum GH, but produced rebound elevation of serum IGF-I. Accordingly, no statistically significant effect of injections on retinal pathology was noted. This finding, however, does not contradict our assumption that GH suppression may decrease the severity of retinopathy.