A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers

Planta. 2001 Jun;213(2):223-30. doi: 10.1007/s004250000496.

Abstract

A novel plant gene CFL1 was cloned from cotton (Gossypium hirsutum L.) fibers by expressed sequence tag (EST) database searching and 5'-RACE (rapid amplification of cDNA ends). This gene shows sequence homology with FKS1 which has been identified as the putative catalytic subunit of the yeast beta-1,3-glucan synthase. It encodes a protein (CFL1p) of 219 kDa with 13 deduced transmembrane helices and 2 large hydrophilic domains, one of which is at the N-terminus and the other in the internal region of the polypeptide. CFL1 displays 21% identity and 41% similarity to FKS1 at the amino acid level over its entire length, with 31% identity and 52% similarity for the hydrophilic central domain. Using RNA and protein blot analysis, CFL1 was found to be expressed at higher levels in cotton fibers during primary wall development. CFL1 also had a strong expression in young roots. Using a calmodulin (CaM)-gel overlay assay, the hydrophilic N-terminal domain of CFL1p was shown to bind to CaM, while the hydrophilic central domain did not. A putative CaM-binding domain, 16 amino acids long, was predicted in the hydrophilic N-terminal domain. Moreover, a product-entrapment assay demonstrated that a protein associated with an in vitro-synthesized callose pellet could be labeled by anti-CFL1 antibodies. Our finding suggests that CFL1 is a putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 and could be involved in callose synthesis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Calmodulin-Binding Proteins
  • Cell Wall / genetics
  • Cell Wall / metabolism
  • Cloning, Molecular
  • Echinocandins
  • Expressed Sequence Tags
  • Fungal Proteins / genetics*
  • Fungal Proteins / metabolism
  • Gene Expression Regulation, Plant
  • Glucosyltransferases / genetics*
  • Glucosyltransferases / metabolism
  • Gossypium / enzymology*
  • Membrane Proteins / genetics*
  • Membrane Proteins / metabolism
  • Membrane Transport Proteins
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plant Structures / cytology
  • RNA, Plant
  • Saccharomyces cerevisiae / enzymology
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae Proteins*
  • Schizosaccharomyces pombe Proteins*

Substances

  • Calmodulin-Binding Proteins
  • Echinocandins
  • Fungal Proteins
  • Membrane Proteins
  • Membrane Transport Proteins
  • Plant Proteins
  • RNA, Plant
  • Saccharomyces cerevisiae Proteins
  • Schizosaccharomyces pombe Proteins
  • Glucosyltransferases
  • 1,3-beta-glucan synthase
  • FKS1 protein, S cerevisiae