In this paper, a control theoretic model of the forearm is developed and analyzed, and a computational method for predicting muscle activations necessary to generate specified motions is described. A detailed geometric model of the forearm kinematics, including the carrying angle and models of how the biceps and the supinator tendons wrap around the bones, is used. Also, including a dynamics model, the final model is a system of differential equations where the muscle activations play the role of control signals. Due to the large number of muscles, the problem of finding muscle activations is redundant, and this problem is solved by an optimization procedure. The computed muscle activations for ballistic movements clearly recaptures the triphasic ABC (Activation-Braking-Clamping) pattern. It is also transparent, from the muscle activation patterns, how the muscles cooperate and counteract in order to accomplish desired motions. A comparison with previously reported experimental data is included and the model predictions can be seen to be partially in agreement with the experimental data.