The diversity of endophytic fungi within single symptomless Norway spruce needles is described and their possible role as pioneer decomposers after needle detachment is investigated. The majority (90%) of all 182 isolates from green intact needles were identified as Lophodermium piceae. Up to 34 isolates were obtained from single needles. Generally, all isolates within single needles had distinct randomly amplified microsatellite (RAMS) patterns. Single trees may thus contain a higher number of L. piceae individuals than the number of their needles. To investigate the ability of needle endophytes to act as pioneer decomposers, surface-sterilized needles were incubated on sterile sand inoculated with autoclaved or live spruce forest humus layer. The dry weight loss of 13-17% found in needles after a 20-week incubation did not significantly differ between the sterilized and live treatments. Hence, fungi surviving the surface sterilization of needles can act as pioneer decomposers. A considerable portion of the needles remained green during the incubation. Brown and black needles, in which the weight loss had presumably taken place, were invaded throughout by single haplotypes different from L. piceae. Instead, Tiarasporella parca, a less common needle endophyte, occurred among these invaders of brown needles. Needle endophytes of Norway spruce seem thus to have different abilities to decompose host tissues after needle cast. L. piceae is obviously not an important pioneer decomposer of Norway spruce needles. The diversity of fungal individuals drops sharply when needles start to decompose. Thus, in single needles the decomposing mycota is considerably less diverse than the endophytic mycota.