Polymerization of isocyanopeptides results in the formation of high molecular mass polymers that fold in a proteinlike fashion to give helical strands in which the peptide chains are arranged in beta-sheets. The beta-helical polymers retain their structure in water and unfold in a cooperative process at elevated temperatures. The peptide architecture in these polymers is a different form of the beta-helix motif found in proteins. Unlike their natural counterparts, which contain arrays of large beta-sheets stacked in a helical fashion, the isocyanopeptide polymers have a central helical core that acts as a director for the beta-sheet-like arrangement of the peptide side arms. The helical structure of these isocyanopeptide polymers has the potential to be controlled through tailoring of the side branches and the hydrogen-bonding network present in the beta-sheets.