T1-weighted magnetic resonance imaging (MRI) was used to evaluate the potential interest of a new Gd-based contrast agent, termed P760, to characterize brain tumor heterogeneity and vascularization and to delineate regions containing permeable vessels. The C6 rat glioma model was used as a model of high-grade glioblastoma. The signal enhancement was measured as a function of time in the vascular compartment and in different regions of interest (ROIs) within the tumor after the injection of 0.02 mmol x kg(-1) of P760. The results were compared to those obtained after the injection of 0.1 mmol x kg(-1) of Gd-DOTA. We showed that P760, in spite of a Gd concentration five times smaller, produces an enhancement in the blood pool similar to that produced by Gd-DOTA. It was shown that P760 makes possible an excellent delineation of regions containing vessels with a damaged blood-brain barrier (BBB). Images acquired 5-10 minutes after P760 injection showed the location of permeable vessels more accurately than Gd-DOTA-enhanced images. The enhancement produced in the tumor by P760 was, however, less than that produced by Gd-DOTA. The extravasation and/or diffusion rate of P760 in the interstitial medium were found to be strongly reduced, compared to those found with Gd-DOTA. This study suggests that the new contrast agent has promising capabilities in clinical imaging of brain tumors.
Copyright 2001 Wiley-Liss, Inc.