To identify genes that are differentially up-regulated in prostate cancer of transgenic adenocarcinoma mouse prostate (TRAMP) mice, we subtracted cDNA isolated from mouse kidney and spleen from cDNA isolated from TRAMP-C1 cells, a prostate tumor cell line derived from a TRAMP mouse. Using this strategy, cDNA clones that were homologous to human six-transmembrane epithelial antigen of the prostate (STEAP) and prostate stem cell antigen (PSCA) were isolated. Mouse STEAP (mSteap) is 80% homologous to human STEAP at both the nucleotide and amino acid levels and contains six potential membrane-spanning regions similar to human STEAP. Mouse PSCA (mPsca) shares 65% homology with human PSCA at the nucleotide and amino acid levels. mRNA expression of mSteap and mPsca is largely prostate-specific and highly detected in primary prostate tumors and metastases of TRAMP mice. Both mSteap and mPsca map to chromosome 5. Another known gene coding for mouse prostate-specific membrane antigen (mPsma) is also highly expressed in both primary and metastatic lesions of TRAMP mice. These results indicate that the TRAMP mouse model can be used to effectively identify genes homologous to human prostate-specific genes, thereby allowing for the investigation of their functional roles in prostate cancer. mSteap, mPsca, and mPsma constitute new tools for preventative and/or therapeutic vaccine construction and immune monitoring in the TRAMP mouse model that may provide insights into the treatment of human prostate cancer.