Mapping Pavlovian conditioning effects on the brain: blocking, contiguity, and excitatory effects

J Neurophysiol. 2001 Aug;86(2):809-23. doi: 10.1152/jn.2001.86.2.809.

Abstract

Pavlovian conditioning effects on the brain were investigated by mapping rat brain activity with fluorodeoxyglucose (FDG) autoradiography. The goal was to map the effects of the same tone after blocking or eliciting a conditioned emotional response (CER). In the tone-blocked group, previous learning about a light blocked a CER to the tone. In the tone-excitor group, the same pairings of tone with shock US resulted in a CER to the tone in the absence of previous learning about the light. A third group showed no CER after pseudorandom presentations of these stimuli. Brain systems involved in the various associative effects of Pavlovian conditioning were identified, and their functional significance was interpreted in light of previous FDG studies. Three conditioning effects were mapped: 1) blocking effects: FDG uptake was lower in medial prefrontal cortex and higher in spinal trigeminal and cuneate nuclei in the tone-blocked group relative to the tone-excitor group. 2) Contiguity effects: relative to pseudorandom controls, similar FDG uptake increases in the tone-blocked and -excitor groups were found in auditory regions (inferior colliculus and cortex), hippocampus (CA1), cerebellum, caudate putamen, and solitary nucleus. Contiguity effects may be due to tone-shock pairings common to the tone-blocked and -excitor groups rather than their different CER. And 3) excitatory effects: FDG uptake increases limited to the tone-excitor group occurred in a circuit linked to the CER, including insular and anterior cingulate cortex, vertical diagonal band nucleus, anterior hypothalamus, and caudoventral caudate putamen. This study provided the first large-scale map of brain regions underlying the Kamin blocking effect on conditioning. In particular, the results suggest that suppression of prefrontal activity and activation of unconditioned stimulus pathways are important neural substrates of the Kamin blocking effect.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Pathways / physiology
  • Autoradiography
  • Behavior, Animal / physiology
  • Brain / physiology*
  • Brain Mapping*
  • Conditioning, Classical / physiology*
  • Data Interpretation, Statistical
  • Drinking Behavior / physiology
  • Electroshock
  • Fluorodeoxyglucose F18 / pharmacokinetics
  • Male
  • Radiopharmaceuticals / pharmacokinetics
  • Rats
  • Rats, Long-Evans

Substances

  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18